FP2 Polar Coordinates

1. June 2010 qu. 9

The diagram shows the curve with equation $y=\sqrt{2 x+1}$ between the points $A\left(-\frac{1}{2}, 0\right)$ and $B(4,3)$.
(i) Find the area of the region bounded by the curve, the x-axis and the line $x=4$. Hence find the area of the region bounded by the curve and the lines $O A$ and $O B$, where O is the origin. [4]
(ii) Show that the curve between B and A can be expressed in polar coordinates as

$$
\begin{equation*}
r=\frac{1}{1-\cos \theta}, \text { where } \tan ^{-1}\left(\frac{3}{4}\right) \leq \theta \leq \pi . \tag{5}
\end{equation*}
$$

(iii) Deduce from parts (i) and (ii) that $\int_{\tan ^{-1}\left(\frac{3}{4}\right)}^{\pi} \operatorname{cosec}^{4}\left(\frac{1}{2} \theta\right) \mathrm{d} \theta=24$.
2. Jan 2010 qu. 4

The equation of a curve, in polar coordinates, is

$$
r=\mathrm{e}^{-2 \theta}, \quad \text { for } 0 \leq \theta \leq \pi
$$

(i) Sketch the curve, stating the polar coordinates of the point at which r takes its greatest value. [2]
(ii) The pole is O and points P and Q, with polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ respectively, lie on the curve. Given that $\theta_{2}>\theta_{1}$, show that the area of the region enclosed by the curve and the lines $O P$ and $O Q$ can be expressed as $k\left(r_{1}^{2}-r_{2}^{2}\right)$, where k is a constant to be found.
3. June 2009 qu. 9
(i) It is given that, for non-negative integers $n, \quad I_{n}=\int_{0}^{\frac{1}{2} \pi} \sin ^{n} \theta \mathrm{~d} \theta$.

Show that, for $n \geq 2, \quad n I_{n}=(n-1) I_{n-2}$.
(ii) The equation of a curve, in polar coordinates, is $\quad r=\sin ^{3} \theta, \quad$ for $0 \leq \theta \leq \pi$.
(a) Find the equations of the tangents at the pole and sketch the curve.
(b) Find the exact area of the region enclosed by the curve.
4. Jan 2009 qu. 7

The diagram shows the curve with equation, in polar coordinates,

$$
r=3+2 \cos \theta, \quad \text { for } 0 \leq \theta<2 \pi
$$

The points P, Q, R and S on the curve are such that the straight lines $P O R$ and $Q O S$ are perpendicular, where O is the pole. The point P has polar coordinates (r, α).
(i) Show that $O P+O Q+O R+O S=k$, where k is a constant to be found.
(ii) Given that $\alpha=\frac{1}{4} \pi$, find the exact area bounded by the curve and the lines $O P$ and $O Q$ (shaded in the diagram).
5. June 2008 qu. 8

The equation of a curve, in polar coordinates, is $\quad r=1-\sin 2 \theta$, for $0 \leq \theta<2 \pi$.
(i)

The diagram shows the part of the curve for which $0 \leq \theta \leq \alpha$, where $\theta=\alpha$ is the equation of the tangent to the curve at O. Find α in terms of π.
(ii) (a) If $\mathrm{f}(\theta)=1-\sin 2 \theta$, show that $\mathrm{f}\left(\frac{1}{2}(2 \mathrm{k}+1) \pi-\theta\right)=\mathrm{f}(\theta)$ for all θ, where k is an integer. [3]
(b) Hence state the equations of the lines of symmetry of the curve

$$
\begin{equation*}
r=1-\sin 2 \theta, \quad \text { for } 0 \leq \theta<2 \pi \tag{2}
\end{equation*}
$$

(iii) Sketch the curve with equation $r=1-\sin 2 \theta$, for $0 \leq \theta<2 \pi$.

State the maximum value of r and the corresponding values of θ.
6. Jan 2008 qu. 4

The equation of a curve, in polar coordinates, is $\quad r=1+2 \sec \theta$, for $-\frac{1}{2} \pi<\theta<\frac{1}{2} \pi$.
(i) Find the exact area of the region bounded by the curve and the lines $\theta=0$ and $\theta=\frac{1}{6} \pi$.
(ii) Show that a cartesian equation of the curve is $(x-2) \sqrt{x^{2}+y^{2}}=x$
7. June 2007 qu. 1

The equation of a curve, in polar coordinates, is $r=2 \sin 3 \theta, \quad$ for $0<\theta<\frac{1}{3} \pi$.
Find the exact area of the region enclosed by the curve between $\theta=0$ and $\theta=\frac{1}{3} \pi$.
8. Jan 2007 qu. 9

The equation of a curve, in polar coordinates, is $\quad r=\sec \theta+\tan \theta, \quad$ for $0 \leq \theta \leq \frac{1}{3} \pi$
(i) Sketch the curve.
(ii) Find the exact area of the region bounded by the curve and the lines $\theta=0$ and $\theta=\frac{1}{3} \pi$
(iii) Find a cartesian equation of the curve.
9. June 2006 qu. 7

The equation of a curve, in polar coordinates, is $\quad r=\sqrt{3}+\tan \theta, \quad$ for $-\frac{1}{3} \pi \leq \theta \leq \frac{1}{4} \pi$
(i) Find the equation of the tangent at the pole.
(ii) State the greatest value of r and the corresponding value of θ.
(iii) Sketch the curve.
(iv) Find the exact area of the region enclosed by the curve and the lines $\theta=0$ and $\theta=\frac{1}{4} \pi$
10. Jan 2006 qu. 8

The equation of a curve, in polar coordinates, is $\quad r=1+\cos 2 \theta, \quad$ for $0 \leq \theta<2 \pi$.
(i) State the greatest value of r and the corresponding values of θ.
(ii) Find the equations of the tangents at the pole.
(iii) Find the exact area enclosed by the curve and the lines $\theta=0$ and $\theta=\frac{1}{2} \pi$
(iv) Find, in simplified form, the cartesian equation of the curve.

