FP2 Polar Coordinates

1. June 2010 qu.9

The diagram shows the curve with equation $y = \sqrt{2x+1}$ between the points $A(-\frac{1}{2}, 0)$ and B(4, 3).

- (i) Find the area of the region bounded by the curve, the *x*-axis and the line x = 4. Hence find the area of the region bounded by the curve and the lines *OA* and *OB*, where *O* is the origin. [4]
- (ii) Show that the curve between B and A can be expressed in polar coordinates as

$$r = \frac{1}{1 - \cos \theta}$$
, where $\tan^{-1}\left(\frac{3}{4}\right) \le \theta \le \pi$. [5]

(iii) Deduce from parts (i) and (ii) that
$$\int_{\tan^{-1}\left(\frac{3}{4}\right)}^{\pi} \cos \operatorname{ec}^{4}\left(\frac{1}{2}\theta\right) \mathrm{d}\theta = 24.$$
 [4]

2. Jan 2010 qu. 4

The equation of a curve, in polar coordinates, is

$$r = e^{-2\theta}$$
, for $0 \le \theta \le \pi$.

- (i) Sketch the curve, stating the polar coordinates of the point at which r takes its greatest value. [2]
- (ii) The pole is *O* and points *P* and *Q*, with polar coordinates (r₁, θ₁) and (r₂, θ₂) respectively, lie on the curve. Given that θ₂ > θ₁, show that the area of the region enclosed by the curve and the lines *OP* and *OQ* can be expressed as k(r₁² r₂²), where k is a constant to be found. [5]

3. <u>June 2009 qu.9</u>

(i) It is given that, for non-negative integers
$$n$$
, $I_n = \int_0^{\frac{1}{2}\pi} \sin^n \theta d\theta$.

Show that, for $n \ge 2$,

$$nI_n = (n-1)I_{n-2}.$$
 [4]

- (ii) The equation of a curve, in polar coordinates, is $r = \sin^3 \theta$, for $0 \le \theta \le \pi$.
 - (a) Find the equations of the tangents at the pole and sketch the curve. [4]
 - (b) Find the exact area of the region enclosed by the curve. [6]

The diagram shows the curve with equation, in polar coordinates,

 $r = 3 + 2 \cos \theta$, for $0 \le \theta < 2\pi$.

The points *P*, *Q*, *R* and *S* on the curve are such that the straight lines *POR* and *QOS* are perpendicular, where *O* is the pole. The point *P* has polar coordinates (r, α) .

- (i) Show that OP + OQ + OR + OS = k, where k is a constant to be found. [3]
- (ii) Given that $\alpha = \frac{1}{4}\pi$, find the exact area bounded by the curve and the lines *OP* and *OQ* (shaded in the diagram). [5]

5. June 2008 qu.8

The equation of a curve, in polar coordinates, is $r = 1 - \sin 2\theta$, for $0 \le \theta < 2\pi$.

(i)

The diagram shows the part of the curve for which $0 \le \theta \le \alpha$, where $\theta = \alpha$ is the equation of the tangent to the curve at *O*. Find α in terms of π . [2]

(ii) (a) If $f(\theta) = 1 - \sin 2\theta$, show that $f(\frac{1}{2}(2k+1)\pi - \theta) = f(\theta)$ for all θ , where k is an integer. [3]

(b) Hence state the equations of the lines of symmetry of the curve

$$r = 1 - \sin 2\theta$$
, for $0 \le \theta < 2\pi$. [2]

(iii) Sketch the curve with equation $r = 1 - \sin 2\theta$, for $0 \le \theta < 2\pi$.

State the maximum value of r and the corresponding values of θ . [4]

6. Jan 2008 qu. 4

The equation of a curve, in polar coordinates, is $r = 1 + 2 \sec \theta$, for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

- (i) Find the exact area of the region bounded by the curve and the lines $\theta = 0$ and $\theta = \frac{1}{6}\pi$. [5]
- (ii) Show that a cartesian equation of the curve is $(x 2)\sqrt{x^2 + y^2} = x$ [3]

7. <u>June 2007 qu.1</u>

The equation of a curve, in polar coordinates, is $r = 2\sin 3\theta$, for $0 < \theta < \frac{1}{3}\pi$.

Find the exact area of the region enclosed by the curve between $\theta = 0$ and $\theta = \frac{1}{3}\pi$. [4]

8. Jan 2007 qu. 9

The equation of a curve, in polar coordinates, is $r = \sec \theta + \tan \theta$, for $0 \le \theta \le \frac{1}{3}\pi$

(i) Sketch the curve.

Sketch the curve.

(ii) Find the exact area of the region bounded by the curve and the lines $\theta = 0$ and $\theta = \frac{1}{3}\pi$ [6]

[2]

[3]

[2]

(iii) Find a cartesian equation of the curve.

9. June 2006 qu.7

The equation of a curve, in polar coordinates, is $r = \sqrt{3} + \tan \theta$, for $-\frac{1}{3}\pi \le \theta \le \frac{1}{4}\pi$

- (i) Find the equation of the tangent at the pole. [2]
 (ii) State the greatest value of *r* and the corresponding value of *θ*. [2]
- (iv) Find the exact area of the region enclosed by the curve and the lines $\theta = 0$ and $\theta = \frac{1}{4}\pi$ [5]

10. Jan 2006 qu. 8

(iii)

The equation of a curve, in polar coordinates, is $r = 1 + \cos 2\theta$, for $0 \le \theta < 2\pi$.

(i) State the greatest value of *r* and the corresponding values of *θ*. [2]
(ii) Find the equations of the tangents at the pole. [2]

(iii) Find the exact area enclosed by the curve and the lines
$$\theta = 0$$
 and $\theta = \frac{1}{2}\pi$ [5]

(iv) Find, in simplified form, the cartesian equation of the curve. [4]